Math 54 Cheat Sheet

Vector spaces

```
Nul(A): Solutions of Ax =0. Row-reduce A. 
Row(A): Space spanned by the rows of A: Row-reduce A and choose the rows that contain the pivots
Col(A): Space spanned by columns of A: Row-reduce A and choose the columns of }A\mathrm{ that contain the piv
```



```
Linear transformation:T}T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+
T is on-to-one if T(\mathbf{u})=\mathbf{0}=>\mathbf{u}=\mathbf{0}
Linearly independence: }\mp@subsup{a}{1}{}\mp@subsup{\mathbf{v}}{\mathbf{1}}{(}+\mp@subsup{a}{2}{}\mp@subsup{\mathbf{v}}{\mathbf{2}}{2}+\cdots+\mp@subsup{a}{n}{}\mp@subsup{\mathbf{v}}{\mathbf{n}}{=0}=\mathbf{0}=>\mp@subsup{a}{1}{}=\mp@subsup{a}{2}{}=\cdots=\mp@subsup{a}{n}{}=0
To show lin. ind, form the matrix of the vectors, and show that Nul(A)={0}
Linear dependence: }\mp@subsup{a}{1}{}\mp@subsup{\mathbf{v}}{1}{\prime}+\mp@subsup{a}{2}{}\mp@subsup{\mathbf{v}}{\mathbf{2}}{2
\frac{Basis}{\mathcal{B}}\mathrm{ for V:A Aliearly independent set such that Span (隹)=V}
TT show sthg is a basis, show it is linerly independent and spans
To find a basis for a vector space, take any elment of thatix v.s. afd tevector, and find }\operatorname{Col}(A
vectors.Then show those vectors form a basis.
Dimension: Number of elements in a basis.
Theorem: If V has a basis of vectors, then every basis of V must have n vectors.
```



```
C:For every vector v in \mathcal{B}
evaluate }T(\mathbf{v})\mathrm{ , and express }T(v)\mathrm{ as a linear combinat
Coordinates:To find [\mathbb{x}]\mathcal{\mathcal{B}}\mathrm{ , express }\mathbf{x}\mathrm{ in terms of the vectors in }\mathcal{B}\mathrm{ .}
```



```
*)
one-to-one and onto, AX = b}\mathrm{ has a unique solution for every b, AT
of A form a basis for R}\mp@subsup{\mathbb{R}}{}{n},Nul(A)={\mathbf{O}},\operatorname{Rank}(A)=
[\begin{array}{ll}{a}&{b}\\{c}&{d}\end{array}\mp@subsup{]}{}{-1}=\frac{1}{ad-bc}[\begin{array}{cc}{d}&{-b}\\{-c}&{a}\end{array}]
[A| I] \ \[I| A A -1
Change of basis: [x] [\mathcal{C}}=\mp@subsup{P}{\mathcal{C}\leftarrow\mathcal{B}}{[x]}\mp@subsup{]}{\mathcal{B}}{}\mathrm{ (think of }\mathcal{C}\mathrm{ as the new, cool basis)
l
```


Diagonalization

Diagonalizability: A is diagonalizable if $A=P D P^{-1}$ for some diagonal D and invertible P.
A and B are similar if $A=P B P^{-1}$ for P invertible
Theorem: IF A has n distinct tigenvalues, THEN A is diagonalizable, but the opposite is not always true!!!! Notes: A can be diagonalizable even if it's not invertible (Ex: $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$). Not all matrices are
diagonalizable (Ex: $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$),
Consequence: $A=P D P^{-1} \Rightarrow A^{n}=P D^{n} P^{-1}$
How to diagonalize: To find the e
To find the eigenvectors, ,
Rational roots theorem: If $p(\lambda)=0$ has a rational root $r=\frac{a}{b}$, then a divides the constant tern
divides the leading coefficien.
Use this to guess zeros of of p. Once you have a zero that works, use long division! Then $A=P D P^{-1}$, where
$D=$ diagonal matrix of eigenvalues. $P=$ matrix of eizenvectors Complex eigenvalues if $\lambda=a+b i$, and \mathbf{v} is an eigenvector, then $A=P C P^{-1}$, where
$P=\left[\begin{array}{ll}R e(\mathbf{v}) & \operatorname{Im}(\mathbf{v})\end{array}\right], C=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$
C is a scaling of $\sqrt{\operatorname{det}(A)}$ followed by a rotaion by θ, wher
$\frac{1}{\sqrt{\operatorname{det}(A)}} C=\left[\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos (\theta)\end{array}\right]$

Orthogonality

$\left.\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}, \mathbf{u}_{\mathbf{u}} \quad \mathbf{u}_{\mathbf{i}} \cdots \cdot \mathbf{u}_{\mathbf{n}}\right\}$ is orthogonal if $\mathbf{u}_{\mathbf{i}} \cdot \mathbf{u}_{\mathbf{j}}=0$ if $i \neq j$, orthonormal if $\mathbf{u}_{\mathbf{i}} \cdot \mathbf{u}_{\mathbf{i}}=1$
$W_{\text {If }}^{\perp}\{$ Set of \mathbf{v} which are orthogonal to every \mathbf{w} in W.
If $\left\{\mathbf{u}_{\mathbf{1}} \cdots \mathbf{u}_{\mathbf{n}}\right\}$ is an orthogonal basis, then:
$\mathbf{y}=c_{1} \mathbf{u}_{\mathbf{1}}+\cdots c_{n} \mathbf{u}_{\mathbf{n}} \Rightarrow c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{\mathbf{j}}}{\mathbf{u}_{\mathbf{j}} \cdot \mathbf{u}_{\mathbf{j}}}$
Orthogonal matrix Q has orthonormal columns! Consequence: $Q^{T} Q=I, Q Q^{T}=$ Orthogonal projection
on $\operatorname{Col}(Q)$. $\begin{aligned} & \text { on } \operatorname{Col}(Q) \text {. } \\ & \|Q \mathbf{x}\|\end{aligned}=\|\mathbf{x}\|$
$(Q \mathbf{x}) \cdot(Q \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$
Orthogonal projection if $\left\{\mathbf{u}_{1}\right.$
$\hat{\mathrm{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \mathbf{u}_{\mathbf{1}}}\right) \mathbf{u}_{1}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{\mathbf{k}} \mathbf{u}_{\mathbf{k}}}\right) \mathbf{u}_{\mathbf{k}}$
$\mathbf{y}-\hat{\mathbf{y}}$ is orthogonal to $\hat{\mathbf{y}}$, shortest distance btw \mathbf{y} and W is $\|\mathbf{y}-\hat{\mathbf{y}}\|$
Gram-Schmidt: Start with $\mathcal{B}=\left\{\mathbf{u}_{\mathbf{1}}, \cdots \mathbf{u}_{\mathbf{n}}\right\}$. Let:
$\mathrm{v}_{1}=\mathrm{u}_{1}$
$\mathrm{v}_{2}=\mathrm{u}_{2}-\left(\frac{\mathrm{u}_{2} \cdot \mathrm{v}_{1}}{\mathrm{v}_{1} \cdot \mathrm{v}_{1}}\right) \mathrm{v}_{1}$
$\mathrm{v}_{3}=\mathrm{u}_{3}-\left(\frac{\mathbf{u}_{3} \cdot \mathrm{v}_{1}}{\mathrm{v}_{1} \cdot \mathrm{v}_{1}}\right) \mathrm{v}_{1}-\left(\frac{\mathrm{u}_{3} \cdot \mathrm{v}_{2}}{\mathrm{v}_{2} \cdot \mathrm{v}_{2}}\right) \mathrm{v}_{\mathbf{2}}$
Then $\left\{\mathbf{v}_{\mathbf{1}} \cdots \mathbf{v}_{\mathbf{n}}\right\}$ is an orthogonal basis for $\operatorname{Span}(\mathcal{B})$, and if $\mathbf{w}_{\mathbf{i}}=\frac{\mathbf{v}_{\mathbf{i}}}{\left\|\mathbf{v}_{\mathbf{i}}\right\|} \|$, then $\left\{\mathbf{w}_{\mathbf{1}}\right.$
an orthonormal basis for $\operatorname{Span}(\mathcal{B})$
$Q R$-factorization: To find Q, apply G-S to columns of A. Then $R=Q^{T} A$
$\frac{\text { Least-squares: To solve } A \mathbf{x}=\mathbf{b} \text { in the least squares-way, solve } A^{T} A \mathbf{x}=A^{T} \mathbf{b} \text {. }}{\text { Least squares solution makes }} A \mathbf{x}$.
$\hat{\mathbf{x}}=R^{-1} Q^{T} \mathbf{b}$, where $A=Q R$.
Inner product spaces $f \cdot g=\int^{b} f(t) g(t) d t$. G-S applies with this inner product as well. Cauchy-Schwarz: $|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\|\|\mathbf{v}\|$
Triangle inequality: $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$
Symmetric matrices ($A=A^{T}$)
Has n real eigenvalues, always diagonalizable, orthogonally diagonalizable $\left(A=P D P^{T}\right.$, P is an orthogonal matrix, equivalent to symmerry!).
Theorem: If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal
How to orthogonally diagonalize: First diagonalize, then apply G-S on each eigenspace and normalize. Then $P=$
Quadratic forms: To find the matrix, put the x_{i}^{2}-coefficients on
For example, if the $x_{1} x_{2}-$ term is 6 , the the $(1,2)$ th and $(2,1)$ that, and evenly distribute the other terms.
Then orthogonally diagonalize $A=P D P^{T}$
$\begin{aligned} & \text { Then let } \mathbf{y} \\ & \text { eigenvalues. }\end{aligned}=P^{T} \mathbf{x}$, then the quadratic form becomes $\lambda_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2}$, where λ_{i} are the
eigenvalues.
Spectral decomposition: $\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}{ }^{T}+\lambda_{2} \mathbf{u}_{2} \mathbf{u}_{\mathbf{2}}{ }^{T}+\cdots+\lambda_{n} \mathbf{u}_{\mathbf{n}} \mathbf{u}_{\mathbf{n}}{ }^{T}$

Second-order and Higher-order differential equations

Homogeneous solutions: Auxiliary equation: Replace equation by polynomial, so $y^{\prime \prime \prime}$ becomes r^{3} etc. Then find the zeros (use the rational roots theorem and long division, see the 'Diagonalization-section).' 'Simple zeros' give
you $e^{r t}$, Repeated zeros (multiplicity m) give you $A e^{r t}+B t e^{r t}+\cdots Z t^{m-1} e^{r t}$ Complex zeros $r=a+b i$ give you $A e^{a t} \cos (b t)+B e^{a t} \sin (b t)$.
$\frac{\text { Undetermined coofficients: }}{y_{p} \text { is a particular solution. To fo find } y_{p}:} y_{0}(t)+y_{p}(t)$, where y_{0} solves the hom. eqn. (equation $=0$), and y_{p} is a particular solution. To find y_{p} :
If the inhom. term is $C t^{m} e^{r t}$, then: $y_{p}=t^{s}\left(A_{m} t^{m} \cdots+A_{1} t+1\right) e^{r t}$, where if r is a root of
aux with multiplicity m, then $s=m$, and if r is not a roon, thens $=0$ aux with multiplicity m, then $s=m$, and if r is
If the inhom term is $C t^{m} e^{a t} \sin (\beta t)$, then:
$y_{p}=t^{s}\left(A_{m} t^{m} \cdots+A_{1} t+1\right) e^{a t} \cos (\beta t)+t^{s}\left(B t^{m} \cdots+B_{1} t+1\right) e^{r t} \sin (\beta t)$, where $s=m$, if $a+b$ is also aroot of aux with multiplicity m ($s=0$ if not). cos always goes with sin
and vice-versa, also, you have to look at $a+b$ as one entity and vice-versa, also, you have to look at $a+b i$ as one entity. (asually the coeff. of $y^{\prime \prime}$) is $=1$. Then
Variation of parameters: First, make sure the leading coefficient
 your hom. solutions. Then $\left[\begin{array}{ll}y_{1}^{\prime} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right]\left[\begin{array}{l}v_{y}^{\prime} \\ v_{2}^{2}\end{array}\right]=\left[\begin{array}{c}0 \\ f(t)\end{array}\right]$. Invert the matrix and solve for v_{1}^{\prime} and v_{2}^{\prime}, and integrate to get v_{1} and v_{2}, and finally use: $y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)$.
Useful formulas: $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
$\int \sec (t)=\ln |\sec (t)+\tan (t)|, \int \tan (t)=\ln |\sec (t)|, \int \tan ^{2}(t)=\tan (x)-x$
$\int \ln (t)=t \ln (t)-t$
Linear independence: f, g, h are linearly independent if
$a f(t)+b g(t)+c h(t)=0 \Rightarrow a=b=c=0$. To show linear dependence, do it directly. To show
linear independence, form the Wronskian: $\widetilde{W}(t)=\left[\begin{array}{cc}f(t) & g(t) \\ f^{\prime}(t) & g^{\prime}(t)\end{array}\right]$ (for 2 functions),
$\widetilde{W}(t)=\left[\begin{array}{ccc}f(t) & g(t) & h(t) \\ f^{\prime}(t) & g^{\prime}(t) & h^{\prime}(t) \\ f^{\prime \prime}(t) & g^{\prime \prime \prime}(t) & h^{\prime \prime}(t)\end{array}\right]$ (for 3 functions). Then pick a point t_{0} where $\operatorname{det}\left(\widetilde{W}\left(t_{0}\right)\right)$
is easy to evaluate. If det $\neq 0$, then f, g, h are linearly independent! Try to look for simplifications before you
differentiate
Fundamental
Fundamental solution set: If f, g, h are solutions and linearly independent.
Largest interval of existence: First make sure the leading coeffficent equals to 1 . Then look at the domanan of each
term. For each domain, consider the part of the interval which contains the initial condition. Finally, intersect the Lerm. For each domain, consider the part of the interval which contains the initial condition. Finally, intersect the
intervals and change any brackets to parentheses. Harmonic oscillator: $m y^{\prime \prime}+b y^{\prime}+k y=0(m=$ inertia

Systems of differential equations

$\frac{\text { To solve } \mathbf{x}^{\prime}=A \mathbf{x}}{\text { your eigenvectors }}: \mathbf{x}(t)=A e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+B e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}}+e^{\lambda_{3} t} \mathbf{v}_{\mathbf{3}}\left(\lambda_{i}\right.$ are your eigenvalues, $\mathbf{v}_{\mathbf{i}}$ are

lincarly independente

Complex eigenvalues If $\lambda=\alpha+i \beta$, and $\mathbf{v}=\mathbf{a}+i \mathbf{b}$. Then
$\mathbf{x}(t)=A\left(e^{\alpha t} \cos (\beta t) \mathbf{a}-e^{\alpha t} \sin (\beta t) \mathbf{b}\right)+B\left(e^{\alpha t} \sin (\beta t) \mathbf{a}+e^{\alpha t} \cos (\beta t) \mathbf{b}\right)$
Notes: You only need to consider one complex eigenvalue. For real eigenvalues, use the formula above. Also,
$\frac{1}{a+b i}=\frac{a-b i}{a^{2}+b^{2}}$

Generalized eigenvectors If you only find one eigenvector \mathbf{v} (even though there are supposed to be 2), then solve the
following equation for $\mathbf{u}:(A-\lambda I)(\mathbf{u})=\mathbf{v}$ (one solution is enough).
Undetermined coefficients First find hom. solution. Then for $\mathbf{x}_{\mathbf{p}}$, just like regular undetermined coefficients, except that instead of guessing $\mathbf{x}_{\mathbf{p}}(t)=a e^{t}+b \cos (t)$, you guess $\mathbf{a} e^{t}+\mathbf{b} \cos (t)$, where $\mathbf{a}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$ is a vector. Then plug into $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$ and solve for \mathbf{a} etc.
Variation of parameters First hom. solution $\mathbf{x}_{\mathbf{h}}(t)=A \mathbf{x}$
Variation of parameters First hom. solution $\mathbf{x}_{\mathbf{h}}(t)=A \mathbf{x}_{\mathbf{1}}(t)+B \mathbf{x}_{\mathbf{2}}(t)$. Then sps
$\mathbf{x}_{\mathbf{p}}(t)=v_{1}(t) \mathbf{x}_{\mathbf{1}}(t)+v_{2}(t) \mathbf{x}_{\mathbf{2}}(t)$, then solve $\widetilde{W}(t)\left[\begin{array}{l}v_{\mathfrak{\prime}}^{\prime} \\ v_{2}\end{array}\right]=\mathbf{f}$, where
$\widetilde{W}(t)=\left[\mathbf{x}_{\mathbf{1}}(t) \mid \quad \mathbf{x}_{\mathbf{2}}(t)\right]$. Multiply both sides by $(\widetilde{W}(t))^{-1}$, integrate and solve for $v_{1}(t)$, $v_{2}(t)$, and plug back into $\mathbf{x}_{\mathbf{p}}$. Finally, $\mathbf{x}=\mathbf{x}_{\mathbf{h}}+\mathbf{x}_{\mathbf{p}}$
Matrix exponential $e^{A t}=\sum_{n=0}^{\infty} \frac{A^{n} t^{n}}{n!}$. To calculate $e^{A t}$, either diagonalize:
$A=P D P^{-1} \Rightarrow e^{A t}=P e^{D t} P^{n-1}$, where $e^{D t}$ is a diagonal matrix with diag. entries $e^{\lambda} i^{t} t$. Or if A only has one eigenvalue λ with multiplicity m, use $e^{A t}=e^{\lambda t} \sum_{n=0}^{m-1} \frac{(A-\lambda I)^{n} t^{n}}{n!}$. Solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ is then $\mathbf{x}(t)=e^{A t} \mathbf{c}$, where \mathbf{c} is a constant vector.

Coupled mass-spring system

$\begin{aligned} & \text { Case } N=2 \\ & \text { Equation: } \mathbf{x}^{\prime \prime}\end{aligned}=A \mathbf{x}, A=\left[\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right]$
Proper frequencies: Eigenvalues of A are: $\lambda=-1,-3$, then proper frequencies $\pm i$, $\pm \sqrt{3} i$ (\pm square
roots of eigenvalues)
$\xrightarrow{\text { Proper modes: }} \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}\sin \left(\frac{\pi}{3}\right) \\ \sin \left(2 \frac{\pi}{3}\right)\end{array}\right]=\left[\begin{array}{l}\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2}\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}\sin \left(2 \frac{\pi}{3}\right) \\ \sin \left(4 \frac{\pi}{3}\right)\end{array}\right]=\left[\begin{array}{c}\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2}\end{array}\right]$
$\underline{\text { Case } N=3}$
$\begin{aligned} & \text { Equation: } \mathbf{x}^{\prime \prime}\end{aligned}=A \mathbf{x}, A=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2\end{array}\right]$
Proper frequencies: Eigenvalues of $A: \lambda=-2,-2-\sqrt{2},-2+\sqrt{2}$, then proper frequencies $\pm \sqrt{2} i, \pm(\sqrt{2+\sqrt{2}})_{i, \pm(\sqrt{2-\sqrt{2}})^{i}}$

Equation: $\mathbf{x}^{\prime \prime}=A \mathbf{x}, A=\left[\begin{array}{cccccc}-2 & 1 & 0 & \cdots & 0 & 0 \\ 1 & -2 & 1 & 0 & \cdots & 0 \\ 0 & 1 & -2 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 1 & -2\end{array}\right]$

Proper modes:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\sin \left(\frac{k \pi}{k \pi}\right) \\
\sin \left(\frac{2 k \pi}{N+\pi}\right) \\
\vdots+1 \\
\vdots \\
\sin \left(\frac{k k^{2}}{N+1}\right)
\end{array}\right]}
\end{aligned}
$$

Partial differential equations

$\frac{\text { Full Fourier series: } f \text { defined on }(-T, T) \text { : }}{f(x) \sim \sum_{m=0}^{\infty}}\left(a_{m} \cos \left(\frac{\pi m x}{T}\right)+b_{m} \sin \left(\frac{\pi m x}{T}\right)\right)$, where:
$a_{0}=\frac{1}{2 T} \int_{-T}^{T} f(x) d x$
$a_{m}=\frac{1}{T} \int_{-T}^{T} f(x) \cos \left(\frac{\pi m x}{T}\right)$
$b_{0}=0$
$b_{0}=0$
$b_{m}=\frac{1}{T} \int_{-T} f(x) \sin \left(\frac{\pi m x}{T}\right)$
Cosine series: f defined on $(0, T): f(x) \sim \sum_{m=0}^{\infty} a_{m} \cos \left(\frac{\pi m x}{T}\right)$,where:
$a_{0}=\frac{2}{2 T} \int_{0}^{T} f(x) d x$ (not a typo)
$a_{m}=\frac{2}{T} \int_{0}^{T} f(x) \cos \left(\frac{\pi m x}{T}\right)$
Sine series: f defined on $(0, T): f(x) \sim \sum_{m=0}^{\infty}{ }^{b}{ }_{m} \sin \left(\frac{\pi m x}{T}\right)$, where:
$b_{0}=0$
$b_{m}=\frac{2}{T} \int_{0}^{T} f(x) \sin \left(\frac{\pi m x}{T}\right)$
Tabular integration: (IBP: $\int f^{\prime} g=f g-\int f g^{\prime}$) To integrate $\int f(t) g(t) d t$ where f is a polynomial,
Tabular integration: (IBP: $\int f^{\prime} g=f g-\int f g^{\prime}$) To integrate $\int f(t) g(t) d t$ where f is a polyn
make a table whose first row is $f(t)$ and $g(t)$. Then differentiate f as many times until you get 0 , and
make a table whose first row is $f(t)$ and $g(t)$. Then differentiate f as many times until you get 0 , and
antidifferentitate as many times untili italigns with the 0 for f. Then multiply the diagonal terms and do + first term
antidifferentiate as

- second term etc.
- second term etc.
\quad Orthogonality formulas: \int
\int_{T}
T
$\cos \left(\frac{\pi m x}{T}\right) \sin \left(\frac{\pi n x}{T}\right) d x=0$
$\int_{-T}^{T} \cos \left(\frac{\pi m x}{T}\right) \cos \left(\frac{\pi n x}{T}\right) d x=0$ if $m \neq n$
$\int_{-T}^{T} \sin \left(\frac{\pi m x}{T}\right) \sin \left(\frac{\pi n x}{T}\right) d x=0$ if $m \neq n$
Convergence: Fourier series \mathcal{F} goes to $f(x)$ is f is continuous at x, and if f has a jump at x, \mathcal{F} goes to the
Convergence: Fourier series \mathcal{F} goes to $f(x)$ is f is continuous at x, and if f has a jump at
average of the jumps. Finally, at the endpoints, \mathcal{F} goes to average of the leftright endpoints.
Heat
Heat Wave equations:
Step 1: Suppose $u(x, t)=X(x) T(t)$, plug this into PDE, and group X-terms and T-terms. Then
$\frac{\frac{X^{\prime \prime}(x)}{X(x)}}{\text { with } T \text {. }}=\lambda$, so $X^{\prime \prime}=\lambda X$. Then find a differential equation for T. Note: If you have an $\alpha-$-term, put it
Sine series: f defined on $(0, T): f(x) \sim \sum_{m=0}^{\infty} b_{m} \sin \left(\frac{\pi m x}{T}\right)$, where:
$b_{0}=0$
$b_{m}=\frac{2}{T} \int_{0}^{T} f(x) \sin \left(\frac{\pi m x}{T}\right)$

antidifferentiate as many times until it aligns with the 0 for f. Then multiply the diagonal terms and do + first term
- second term etc.
Orthogonality formulas: \int
\int_{T}
$\cos \left(\frac{\pi m x}{T}\right) \sin \left(\frac{\pi n x}{T}\right) d x=0$
$\int_{-T}^{T} \cos \left(\frac{\pi m x}{T}\right) \cos \left(\frac{\pi n x}{T}\right) d x=0$ if $m \neq n$
Convergence: Fourier series \mathcal{F} goes to $f(x)$ is f is continuous at x, and if f has a jump at x, \mathcal{F} goes to the Heat Wave equations:
$\frac{\frac{X^{\prime \prime}(x)}{X(x)}}{\frac{X}{X}(x)}=\lambda$, so $X^{\prime \prime}=\lambda X$. Then find a differential equation for T. Note: If you have an α-term, put it

Step 2: Deal with $X^{\prime \prime}=\lambda X$. Use boundary conditions to find $X(0)$ etc. (if you have $\frac{\partial u}{\partial x}$, you might have $X^{\prime}(0)$ instead of $X(0)$).
Step 3: Case $1: \lambda=\omega^{2}$, then $X(x)=A e^{\omega x}+B e^{-\omega x}$, then find $\omega=0$, contradiction. Case 2:
$\lambda=0$, then $X(x)=A x+B$, then eihter find $X(x)=0$ (contradiction), or find $X(x)=A$. Case 3 $\lambda=-\omega^{2}$, then $X(x)=A \cos (\omega x)+B \sin (\omega x)$. Then solve for ω, usually $\omega=\frac{\pi m}{T}$. Also, if case 2 works, should find cos, if case 2 doesn't work, should find sin.
Finally, $\lambda=-\omega^{2}$, and $X(x)=$ whatever you found in 2$)$ w/o the constant.
Step 4: Solve for $T(t)$ with the λ you found. Remember that for the heat equation
Step 4: Solve for $T(t)$ with the λ you found. Remember that for the
$T^{\prime}=\lambda T \Rightarrow T(t)=\overline{A_{m}} e^{\lambda t}$. And for the wave equation:
$T^{\prime \prime}=\lambda T \Rightarrow T(t)=\overline{A_{m}} \cos (\omega t)+\overline{B_{m}} \sin (\omega t)$
Step 5: Then $u(x, t)=\sum_{m=0}^{\infty} T(t) X(x)$ (if case 2 works), $u(x, t)=\sum_{m=1}^{\infty} T(t) X(x)$ (if, case 2 doesn't work!) case 2 doesn' t work!
Step 6: Use $u(x, 0)$, and plug in $t=0$. Then use Fourier cosine or sine series or just 'compare', i.e. if $u(x, 0)=4 \sin (2 \pi x)+3 \sin (3 \pi x)$, then $\overline{A_{2}}=4, \overline{A_{3}}=3$, and $\overline{A_{m}}=0$ if $m \neq 2$, Step 7: (only for wave equation): Use $\frac{\partial u}{\partial t} u(x, 0)$: Differentiate Step 5 with respect to t and set $t=0$. The Step 7 : (only for wave equation): Use
use Fourier cosine or series or compare?
ρ

Nonhomogeneous heat equation: $\{$
$\frac{\partial u}{\partial t}=\beta \frac{\partial^{2} u}{\partial x^{2}}+P(x)$
$u(0, t)=U_{1}$.
$u(0, t)=U_{1}$,
$u(x, 0)=f(x)$
Then $u(x, t)=v(x)+w(x, t)$ where:
$v(x)=\left[U_{2}-U_{1}+\int_{0}^{L} \int_{0}^{z} \frac{1}{\beta} P(s) d s d z\right] \frac{x}{L}+U_{1}-\int_{0}^{x} \int_{0}^{z} \frac{1}{\beta} P(s) d s d z$ and $w(x, t)$
solves the hom. eqn: $\left\{\begin{array}{c}\frac{\partial w}{\partial t}=\beta \frac{\partial^{2} w}{\partial x^{2}} \\ w(0, t)=0, \\ u(x, 0)=f(x)-v(x)\end{array} \quad w(L, t)=0\right.$
D'Alembert's formula: ONLY works for wave equation and $-\infty<x<\infty$:
$u(x, t)=\frac{1}{2}(f(x+\alpha t)+f(x-\alpha t))+\frac{1}{2 \alpha} \int_{x-\alpha t}^{x+\alpha t} g(s) d s$, where
$u_{t t}=\alpha^{2} u_{x x}, u(x, 0)=f(x), \frac{\partial u}{\partial t} u(x, 0)=g(x)$. The integral just means 'antidifferentiate and plug in'.

Laplace equation:
Same as for Heat/Wave, but $T(t)$ becomes $Y(y)$, and we get $Y^{\prime \prime}(y)=-\lambda Y(y)$. Also, instead of writing $Y(y)=\widetilde{A_{m}} e^{\omega y}+\widetilde{B_{m} e^{-\omega y}}$, write $Y(y)=\widetilde{A_{m}} \cosh (\omega y)+\widetilde{B_{m}} \sinh (\omega y)$.

